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M.A.C. ្រទឹស្តីបទវមិា្រត

វត្ថុបំណង

ក្នុងអត្ថបទេនះ េយងីនឹងសិក�អំពី្រទឹស្តីបទវមិា្រត ឬ្រទឹស្តីបទ rank­nullity ែដលនិយាយអំពី
ទំនាក់ទំនង range space និង null space ។ ប៉ុែន្ត មុននឹងែស្វងយលពី់្រទឹស្តីបទវមិា្រតក្នុងអត្ថបទ
េនះ េយងីសូមែណនាអំំពីវត្ថុមួយចំនួនែដល្រត�វការ។

1 លំហវុចិទ័រ (Vector space)
និយមន័យ 1.1 (លំហវុចិទ័រ)

លំហវុិចទ័រ (ឬលំហលីេនែអ៊រ)V េលីកាយ lFជាសំណំុមិនទេទរែដលផ្ទុកធាតុេហថា វុិចទ័រ េហយី្របដាប់េដាយ៖

1. ្របមាណវធីិបូក (addition)៖ គូៃនធាតុ u, v ∈ V េគបាន u+ v ∈ V ជាធាតុែតមួយគត់។

2. ្របមាណវធីិគុណសា្ក ែល (scalar multiplication)៖ ្រគប់ a ∈ lF, u ∈ V េគបាន au ∈ V
ជាធាតុែតមួយគត់។

េលីសពីេនះេទៀត ្របមាណវធីិទាងំពីរេនះេផ្ទ�ងផា្ទ ត់លក្ខខណ្ឌ ដូចខាងេ្រកាម៖

1. (V,+)មានលក្ខណៈជា្រក�ម្រតឡប់៖

• ∀u, v ∈ V : u+ v = v + u, (លក្ខណៈ្រតឡប់) ។
• ∀u, v, w ∈ V : (u+ v) + w = u+ (v + w), (លក្ខណៈផ្តុ ំ) ។

• ∀u ∈ V : u+ 0 = u, (0ជាវុចិទ័រសូន្យែតមួយគត់ក្នុង V ) ។

• ∀u ∈ V, ∃(−u) ∈ V ែដល u+ (−u) = 0។

2. កាយ lFមានអំេពីេលី V ចំេពាះ្របមាណវធីិគុណសា្ក ែល

• ∀u ∈ V ែដល 1 · u = 1u = u ។
• ∀a, b ∈ lF និង ∀u ∈ V ែដល (ab)x = a(bx) ។

3. ្របមាណវធីិគុណសា្ក ែលមានលក្ខណៈបំែបកចំេពាះ្របមាណវធីិបូក៖

• ∀a ∈ lF និង ∀u, v ∈ V ែដល a(u+ v) = au+ av ។
• ∀a, b ∈ lF និង ∀u ∈ V ែដល (a+ b)u = au+ bu ។

សំគាល់៖ វុិចទ័រមួយក្នុងលំហ គឺជាអង្កត់ែដលមានតៃម្លនិងទិសេដជាក់លាក់ក្នុងលំហ។

ឧទាហរណ៍ 1.1. {0}ជាលំហវុចិទ័រតូចបំផុត ។
ឧទាហរណ៍ 1.2. សំណំុៃន្រគប់ n−tupleជាមួយនឹងធាតុក្នុងកាយ lFតាងេដាយ lFn។ សំណំុេនះជាលំហវុចិទ័រ
េលីកាយ lFជាមួយ្របមាណវធីិបូកកូអរេដាេន និងផលគុណសា្ក ែល។
្របសិនេបី u = (a1, a2, ..., an) ∈ lFn, v = (b1, b2, ..., bn) ∈ lFn និង c ∈ lF េនាះ
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• u+ v = (a1 + b1, a2 + b2, ..., an + bn) ។

• cu = (ca1, ca2, ..., can) ។

េលីសពីេនះេទៀត េបីកាយ lF = lR ឬ lF = C, លំហវុចិទ័រ V េហថា លំហវុចិទ័រៃនចំនួនពិត (real vector
space) ឬ លំហវុចិទ័រៃនចំនួនកំុផ្លិច (complex vector space) េរៀងគា្ន ។
និយមន័យ 1.2 (លំហវុចិទ័ររង)

សំណំុរងW មិនទេទរេនក្នុងលំហវុចិទ័រ V េលីកាយ lF េហថាលំហរង (subspace) ៃន V លុះ្រតាែត
W សា្ត បចំេពាះ្របមាណវធីិបូក និង្របមាណវធីិគុណសា្ក ែលៃនលំហវុចិទ័រ V ។ មានន័យថា

W ≤ V ⇐⇒

{
∀w1, w2 ∈ W : w1 + w2 ∈ W

∀a ∈ lF, w ∈ W : aw ∈ W
។

សំគាល់៖ លំហរងៃនលំហវុចិទ័រ V េលីកាយ lFជាលំហវុចិទ័រេលីកាយ lF ។

2 េគាល និងវមិា្រត (Bases and Dimension)
និយមន័យ 2.1 (េគាល)

េគមាន V ជាលំហវុចិទ័រ។ េគាល β មួយៃន V គឺជាសំណំុរងៃន V ែដលេផ្ទ�ងផា្ទ ត់លក្ខខណ្ឌ ពីរដូច
ខាងេ្រកាម៖

1. β ជាសំណំុរងមិនអា្រស័យលីេនែអ៊រៃនវុចិទ័រក្នុង V មានន័យថា∑
vi∈β

aivi = 0 ទាញបាន ai = 0, ∀i ។

2. β បង្ក V មានន័យថា ្រគប់ធាតុរបស់ V អាចសរេសរេទជាបន្សលីំេនែអ៊រៃនធាតុរបស់ β ។
ក្នុងន័យគណិតវទិយគឺ

∀v ∈ V, ∃a1, ..., ak ∈ lF, v1, ..., vk ∈ β : v =
k∑

i=1

aivi ។

ឧទាហរណ៍ 2.1. េគមានកាយ lR និង S ជាសំណំុរងៃន lRn ែដលផ្ទុកវុចិទ័រ e1, e2, ..., en កំណត់េដាយ

e1 = (1, 0, 0, ..., 0)

e2 = (0, 1, 0, ..., 0)

... ...
en = (0, 0, 0, ..., 1) ។
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េនាះ្រគប់ x = (x1, ..., xn) ∈ lRn េគបាន
x = (x1, ..., xn)

= x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ...+ xn(0, 0, ..., 1)

= x1e1 + x2e2 + ...+ xnen

នាឱំ្យ x = (x1, x2, ..., xn) បង្ក lRn។
េបី x = 0 និង a1, a2, ..., an ∈ lRn េគបាន

x =
n∑

i=1

aixi = 0

ទាញបាន
ai = 0, ∀i

េនាះ វុចិទ័រ x1, x2, ..., xn មិនអា្រស័យលីេនែអ៊រ។
តាមលក្ខខណ្ឌ ពីរខាងេលី ដូចេនះ S = {x1, x2, ..., xn} គឺជាេគាលៃន lRn។
សំគាល់៖ េគាលរបស់លំហវុចិទ័រ មិនែមនមានែតមួយេទ ឬលំហវុចិទ័រមួយអាចមានេគាលេ្រចីនេលីសពីមួយ ឬអាច
មានេគាលរាប់មិនអស់។
និយមន័យ 2.2 (វមិា្រត)

លំហវុចិទ័រមួយមានវមិា្រតកំណត់ (finite dimension) លុះ្រតាែតវាមានេគាលមួយែដលផ្ទុកចំនួនវុចិទ័រ
កំណត់។ ចំនួនែតមួយគត់ៃនវុចិទ័រក្នុងេគាលចំេពាះ V េហថា វមិា្រត (dimension) ៃន V និងតាងេដាយ
dim(V ) ។

ឧទាហរណ៍ 2.2. .
1. លំហវុចិទ័រ {0}មានវមិា្រតសូន្យ ។

2. លំហវុចិទ័រ lFn មានវមិា្រត n ។
្រទឹស្តីបទ 2.1 (វមិា្រតៃនលំហរង)

េគមាន W ជាលំហរងៃនលំហវុចិទ័រែដលមានវមិា្រតរាប់អស់ V ។ េគបាន W ជាវមិា្រតរាប់អស់ និង
dim(W ) ≤dim(V )។ មយង៉វញិេបី dim(W ) =dim(V ) េនាះ V = W ។

ស្រមាយបញ្ជ ក.់ េគមាន dim(V ) = n។ ្របសិនេបីW = {0} េនាះW មានវមិា្រតរាប់អស់ែដល
dim(W ) = 0 ≤ n។
មយង៉វញិ េបីW ផ្ទុកឯកធាតុខុសពីសូន្យ v1 ដូចេនះ {v1} គឺជាសំណំុមិនអា្រស័យលីេនែអ៊រ។
េយងីបន្តឱ្យ v1, v2, ..., vk ∈ W ែដល {v1, v2, ..., vk} គឺមិនអា្រស័យលីេនែអ៊រ។ េដាយសារែតគា្ម នសំណំុរង
មិនអា្រស័យលីេនែអ៊រៃន V អាចផ្ទុកធាតុេ្រចីនជាង n វុចិទ័រ េនាះេយងីកំណតយ់ក k ≤ n និង {v1, v2, ..., vk}
គឺមិនអា្រស័យលីេនេអ៊រ។
មយង៉វញិ {v1, v2, ..., vk} បង្កW េនាះវាជាេគាលៃនW ។
ដូចេនះ

dim(W ) = k ≤ n ។
្របសិនេបី dim(W ) = n េនាះេគាលៃនW ជាសំណំុរងមិនអា្រស័យលីេនែអ៊រៃន V ែដលផ្ទុក n វុចិទ័រ។
េគបាន dim(V ) = dim(W ) = n េនាះមានន័យថា V = W ។ ■
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្រទឹស្តីបទ 2.2
្របសិនេបីW ជាលំហរងៃនលំហវុចិទ័រែដលមានវមិា្រតរាប់អស់ V េនាះេគាលៃនW អាចព្រងីកកា្ល យជា

េគាលៃនW ។

ស្រមាយបញ្ជ ក.់ ឧបមាថា S = {u1, ..., um}ជាសំណំុរងមិនអា្រស័យលីេនែអ៊រៃនW។

• ្របសិនេបី S បង្កW េគបាន S ជាេគាលៃនW ។

• ្របសិនេបី S មិនបង្កW េទ េនាះW ̸= span(S) ។

េគមាន v = {v1, v2, ..., vm} ∈ W ែដល v ̸= span(S)
េដាយសារែត S មិនអា្រស័យលីេនែអ៊រ េនាះ

m∑
i=1

aiui = 0 =⇒ ai = 0, ∀i

ឧបមាថា
bv +

m∑
i=1

aiui = 0 =⇒ v = −1

b

m∑
i=1

aiui

• ្របសិនេបី b ̸= 0 េនាះ v ∈ span(S) ។

• ្របសិនេបី b = 0 និងមាន ai = 0 ដូចេនះ S ∪ {v} មិនអា្រស័យលីេនែអ៊រ ។

េយងីនឹង្រសាយថា S ∪ {v} បង្កW
េដាយ S = {u1, ..., um} និង v = {v1, v2, ..., vm}
ចំេពាះ a1, ..., am, b1, ..., bm ∈ lF ែដល

a1u1 + ...+ amum + b1v1 + ...+ bmvm = 0

u1 = (−a−1
1 a2)u2 + ...+ (−a−1

1 am)um + (−a−1
1 b1)v1 + ...+ (−a−1

1 bm)vm

នាឱំ្យ 
u1 ∈ span

(
S

′ ∪ v
)
ែដល S

′
= {u2, ..., um} ⊂ S

ដូេច្នះ ្រគប់ធាតុក្នុង S ∪ {v}អាចសរេសរដូច u1 មានន័យថា

{u1, ..., um, v1, ..., vm} បង្ក W

េហតុេនះ S ∪ {v} បង្កW េគបាន S ∪ {v}ជាេគាលៃនW ។
ដូចេនះ េគាលៃនW ែដលជាលំហរងៃនលំហវុចិទ័រ V អាចព្រងីកកា្ល យជាេគាលៃនW ។ ■
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3 បែម្លងលីេនែអ៊រ, null spaces, និង សំណំុរូបភាព
3.1 បែម្លងលីេនែអ៊រ (Linear Transformations)
និយមន័យ 3.1 (បែម្លងលីេនែអ៊រ)

េគឱ្យ V និងW ជាលំហវុចិទ័រេលីកាយ lF។ អនុគមន៍ T : V → W ជាបែម្លងលីេនែអ៊រពី V េទW
លុះ្រតាែតចំេពាះ្រគប់ u, v ∈ V និង c ∈ lF ែដល

T (cu+ v) = cT (u) + T (v) ។

ឧទាហរណ៍ 3.1. េគកំណត់

T : lR2 → lR2 េដាយ T (a1, a2) = (2a1 + a2, a1) ។

េគឱ្យ c ∈ lR និង u, v ∈ lR2 ែដល u = (x1, x2) និង v = (y1, y2)
េដាយសារ

cu+ v = (cx1 + y1, cx2 + y2)

េគបាន
T (cu+ v) = T (cx1 + y1, cx2 + y2)

= (2(cx1 + y1) + cx2 + y2, cx1 + y1)

មយង៉វញិ
cT (u) + T (v) = c (2x1 + x2, x1) + (2y1 + y2, y1)

= (2cx1 + cx2 + 2y1 + y2, cx1 + y1)

= (2(cx1 + y1) + cx2 + y2, cx1 + y1)

េគបាន
T (cu+ v) = cT (u) + T (v)

ដូចេនះ T ជាបែម្លងលីេនែអ៊រ ។

3.2 Null space និង សំណំុរូបភាព
និយមន័យ 3.2

េគមាន V និងW ជាលំហវុចិទ័រ និងកំណត់ T : V → W ជាលីេនែអ៊រ ។
• Null space (ឬ kernel) តាងេដាយ N(T ) គឺជាសំណំុៃន្រគប់វុចិទ័រ u ∈ V, T (u) = 0 ។
កំណត់សរេសរ

N(T ) = {u ∈ V |T (u) = 0} ។
• សំណំុរូបភាព (Range) (ឬ image) តាងេដាយR(T )ជាសំណំុរងៃនW ែដលផ្ទុក្រគប់រូបភាពៃន
វុចិទ័រក្នុង V ។ កំណត់សរេសរ

R(T ) = {T (u) |u ∈ V } ។
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ឧទាហរណ៍ 3.2. េគឱ្យ T : lR3 → lR2 ជាបែម្លងលីេនែអ៊រ ែដលកំណត់េដាយ

T (a1, a2, a3) = (a1 − 2a2, 3a3)

េនាះ
N(T ) = {(2a, a, 0) | a ∈ lR}

េ្រពាះ
T (2a, a, 0) = (2a− 2a, 0) = (0, 0)

និង
R(T ) = lR2

េ្រពាះរូបភាពៃន lR3 គឺ lR2 ែដលមានពីរកំប៉ូសង់ (Component) ។
្រទឹស្តីបទ 3.1

េគមាន V និងW ជាលំហវុចិទ័រ និងកំណត់ T : V → W ជាលីេនែអ៊រ។ េយងីបានN(T ) និងR(T )

គឺជាលំហរងៃន V និងW េរៀងគា្ន ។

ស្រមាយបញ្ជ ក.់ តាង 0V និង 0W ជាវុចិទ័រសូន្យៃន V និងW េរៀងគា្ន ។
ករណី T (0V ) = 0W េគបាន 0V ∈ N(T ) ។
តាង u, v ∈ N(T ) និង a ∈ lF េនាះ

T (u+ v) = T (u) + T (v)

= 0W + 0W

= 0W

និង
T (au) = aT (u)

= a0W

= 0W

ដូចេនះ u, v ∈ N(T ) និង a ∈ lF កំណត់បាន N(T )ជាលំហរងៃន V ។
េដាយសារែត T (0v) = 0w េគបាន 0W ∈ R(T ) ។
តាង u, v ∈ R(T ) និង a ∈ lF េនាះមាន x, y ∈ V ែដល T (x) = u និង T (y) = v ។
ដូេច្នះ

T (x+ y) = T (x) + T (y)

= u+ v

និង
T (ax) = aT (x)

= au

ដូចេនះ u, v ∈ R(T ) និង a ∈ lF កំណត់បាន R(T )ជាលំហរងៃនW ។ ■

ទំព័រទី 6



M.A.C. ្រទឹស្តីបទវមិា្រត

្រទឹស្តីបទ 3.2
េគមាន V និង W ជាលំហវុចិទ័រ និង T : V → W ជាលីេនែអ៊រ។ េបី β = {v1, v2, ..., vn}

ជាេគាលៃន V េនាះ

R(T ) = span(T (β)) = span ({T (v1), T (v2), ..., T (vn)}) ។

ស្រមាយបញ្ជ ក.់ ឧបមាថា w ∈ R(T ) េនាះ w = T (v), ∀v ∈ V ។
េដាយដឹងថា β ជាេគាលៃន V េយងីបាន

v =
n∑

i=1

aivi, a1, a2, ..., an ∈ lF

េដាយសារែត T ជាលីេនែអ៊រ េនាះ

w = T (v) =
n∑

i=1

aiT (vi) ∈ span(T (β))

មយង៉វញិ β = {v1, v2, ..., vn} េនាះ

span(T (β)) = span ({T (v1), T (v2), ..., T (vn)})

េគបាន

R(T ) = span(T (β)) = span ({T (v1), T (v2), ..., T (vn)}) , េ្រពាះ w ∈ R(T )

■
និយមន័យ 3.3

េគមាន V និង W ជាលំហវុចិទ័រ និងកំណត់ T : V → W ជាលីេនែអ៊រ ។ ្របសិនេបី N(T ) និង
R(T )មានវមិា្រតរាប់អស់ េនាះេយងីកំណត់

1. Nullity ៃន T កំណត់សរេសរ nullity(T )ជាវមិា្រតៃន N(T ) ។

2. Rank ៃន T កំណត់សរេសរ rank(T )ជាវមិា្រតៃន R(T ) ។

4 ្រទឹស្តីបទវមិា្រត (Dimension Theorem)
្រទឹស្តីបទ 4.1 (្រទីស្តីបទវមិា្រត)

េគមាន V និងW ជាលំហវុចិទ័រេលីកាយ lF និង T : V → W ជាលីេនែអ៊រ។ ឧបមាថា V មានវមិា្រត
រាប់អស់ េនាះ

nullity(T ) + rank(T ) = dim(V ) ។
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ស្រមាយបញ្ជ ក.់ ឧបមាថា dim(V ) = n, dim(N(T )) = k និង {v1, v2, ..., vk}ជាេគាលៃន N(T )។
េដាយដឹងថា N(T ) ⊆ V េនាះតាម្រទឹស្តីបទ 2.2 េយងីព្រងីក {v1, v2, ..., vk}ជាេគាលតាងេដាយ

β = {v1, v2, ..., vn} ៃន V ។

េយងីនឹងបងា្ហ ញថា S = {T (vk+1), T (vk+2), ..., T (vn)}ជាេគាលៃន R(T ) ។
ដំបូងបងា្ហ ញថា S span R(T )។ តាម្រទឹស្តីបទ 3.2 និង T (vi) = 0 េ្រពាះ {v1, v2, ..., vk} ជាេគាលៃន
N(T )
ចំេពាះ 1 ≤ i ≤ k េយងីមាន

R(T ) = span ({T (v1), T (v2), ..., T (vn)})
= span ({T (vk+1), T (vk+2), ..., T (vn)})
= span(S)

ឥឡូវេយងីបងា្ហ ញថា S គឺមិនអា្រស័យលីេនែអ៊រ។ ឧបមាថា
n∑

i=k+1

biT (vi) = 0 ចំេពាះ bk+1, bk+2, ..., bn ∈ lF

េដាយ T ជាលីេនែអ៊រ េនាះេយងីអាចេ្របីលក្ខណៈ T (cu) = cT (u) ចំេពាះ u ∈ V, c ∈ lF គឺ

T

(
n∑

i=k+1

bivi

)
= 0

ដូចេនះ
n∑

i=k+1

bivi ∈ N(T ) ។

េហតុេនះ ចំេពាះ c1, c2, ..., ck ∈ lF ែដល
n∑

i=k+1

bivi =
k∑

i=1

civi

k∑
i=1

(−ci)vi +
n∑

i=k+1

bivi = 0

េដាយសារែត β ជាេគាលៃន V េនាះ bi = 0, ∀i។ េហតុេនះ S គឺមិនអា្រស័យលីេនែអ៊រ។
ដូេច្នះ S = {T (vk+1), T (vk+2), ..., T (vn)}ជាេគាលៃន R(T ) ។
ដូចេនះ សំណំុរូបភាពមានវមិា្រត rank(T ) = n− k
េដាយេយងីបានតាង dim(V ) = n, dim(N(T )) = nullity(T ) = k
េគបាន

rank(T ) = dim(V )− nullity(T )
ដូេច្នះ

nullity(T ) + rank(T ) = dim(V ) ។
■
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ជាក់ែស្តងដូចឧទាហរណ៍ 3.2 េយងីអាចេ្របី្រទឹស្តីបទវមិា្រតេលីបែម្លងលីេនែអ៊រ T ែដលមាន dim(V ) = 3 និង
rank(T ) = 2 េដីម្បរីក nullity(T )បានតាមរយៈ

nullity(T ) + rank(T ) = dim(V )

នាឱំ្យ 
nullity(T ) = dim(V )− rank(T ) = 1 ។

4.1 ការអនុវត្តន៍េលី្រទឹស្តីបទវមិា្រត
្រទឹស្តីបទ 4.2

េគមាន V និងW ជាលំហវុចិទ័រ និងឱ្យ T : V → W ជាលីេនែអ៊រ។ េគបាន T ជាអនុវត្តន៍មួយទល់
មួយ (one­to­one) លុះ្រតាែត N(T ) = 0 ។

ស្រមាយបញ្ជ ក.់ .
ឧបមាថា T ជាអនុវត្តន៍មួយទល់មួយ និង u ∈ N(T )។
េគបាន

T (u) = 0 = T (0)

េដាយសារ T ជាអនុវត្តន៍មួយទល់មួយ និងមាន u = 0 ដូេច្នះ N(T ) = {0} ។
ឥឡូវសន្មត N(T ) = 0 និងឧបមាថា T (u) = T (v)។ េគបាន

0 = T (u)− T (v) = T (u− v)

តាមលក្ខណៈៃនបែម្លងលីេនែអ៊រ T ។
ដូចេនះ x− y ∈ N(T ) = {0} ែដលទាញបាន x− y = 0 ឬ x = y ។
េនះមានន័យថា T ជាអនុវត្តន៍មួយទល់មួយ ។ ■
្រទឹស្តីបទ 4.3

េគមាន V និង W ជាលំហវុចិទ័រែដលមានវមិា្រតកំណត់និងេស្មីគា្ន និង T : V → W ជាលីេនែអ៊រ។
េនាះសំេណីរទាងំបីខាងេ្រកាមជាសំេណីរសមមូលគា្ន ។

1. T ជាអនុវត្តន៍មួយទល់មួយ ។

2. T ជាអនុវត្តន៍េពញ ។

3. rank(T ) =dim(V ) ។

ស្រមាយបញ្ជ ក.់ េ្របី្រទឹស្តីបទ 4.2 ខាងេលី េយងីបាន T ជាអនុវត្តន៍មួយទល់មួយលុះ្រតាែត N(T ) = {0} ។
េដាយសារែត N(T ) = 0 លុះ្រតាែត nullity(T ) = 0 ។
តាម្រទឹស្តីបទវមិា្រត េយងីមាន

nullity(T ) + rank(T ) = dim(V )

នាឱំ្យ
rank(T ) = dim(V )
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លុះ្រតាែត
rank(T ) = dim(W )

េ្រពាះេគមាន
dim(V ) = dim(W )

លុះ្រតាែត
dim(R(T )) = dim(W )

តាម្រទឹស្តីបទ 2.1 េគបាន
R(T ) = W

ដូេច្នះ T ជាអនុវត្តន៍េពញ។
សរុបមក សំេណីរទាងំបីសមមូលគា្ន េទវញិេទមក។ ■
ឧទាហរណ៍ 4.1. តាង Pn(lR)ជាសំណំុៃនពហុធាែដលមានដឺេ្រកយ៉ាងេ្រចីន n ។
សំណំុេនះជាលំហវុចិទ័រ ជាមួយនឹង្របមាណវធីិបូក និង្របមាណវធីិគុណសា្ក ែលកំណត់ដូចខាងេ្រកាម៖

• ្របមាណវធីិបូក៖ េគមាន f(x), g(x) ∈ Pn(lR) េគបាន f(x) + g(x) ∈ Pn(lR)

• ្របមាណវធីិគុណសា្ក ែល៖ ្រគប់ a ∈ lR, f(x) ∈ Pn(lR) េគបាន af(x) ∈ Pn(lR) ។

េយងីពិនិត្យអនុគមន៍ T : P2(lR) → P3(lR)ជាបែម្លងលីេនែអ៊រ កំណត់េដាយ

T (f(x)) = 2f
′
(x) +

ˆ x

0

3f(t)dt ។

សិក�បែម្លងលីេនែអ៊រ T ។
េដាយ P2(lR) = ax2 + bx+ cមានេគាល {1, x, x2} ៃន P2(lR)
តាម្រទឹស្តីបទ 3.2 េគបាន

R(T ) = span({T (1), T (x), T (x2)})

េគមាន
T (1) = 2(1)′ +

ˆ x

0

3dt

= 3x

T (x) = 2x
′
+

ˆ x

0

3xdt

= 2 +
3

2
x2

T (x2) = 2(x2)
′
+

ˆ x

0

3x2dt

= 4x+ x3

េគបាន
R(T ) = span

({
3x, 2 +

3

2
x2, 4x+ x3

})
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េដាយសារែត
{
3x, 2 + 3

2
x2, 4x+ x3

}
គឺមិនអា្រស័យលីេនែអ៊រ េនាះកំណត់បាន rank(T ) = 3 ។

េដាយដឹងថា dim(P3(lR)) = 4 េនាះ T មិនែមនជាអនុវត្តន៍េពញ េ្រពាះ rank(T ) ̸= dim(P3(lR)) ។
តាម្រទឹស្តីបទវមិា្រត េយងីមាន

nullity(T ) + rank(T ) = dim(V )

នាឱំ្យ
nullity(T ) = 3− 3 = 0

ដូចេនះ
N(T ) = {0}

តាម្រទឹស្តីបទ 4.2 ទាញបាន T ជាអនុវត្តន៍មួយទល់មួយ ។
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